习题完整解析
-
判断 能否被化简:若能,则写出化简后的结果;若不能,请说明理由.
-
判断 能否被化简:若能,则写出化简后的结果;若不能,请说明理由.
\begin{flalign*}\therefore 原式&=\sqrt{\frac{37+19}{2}}-\sqrt{\frac{37-19}{2}}\\&=\sqrt{\frac{56}{2}}-\sqrt{\frac{18}{2}}\\&=2\sqrt{7}-3\end{flalign*}
-
已知 ,运用公式 ,计算 的值.
\begin{flalign*}解:由题,得\tan{\frac{\theta}{2}}&=\sqrt{\frac{1-\frac{3\sqrt{2}}{5}}{1+\frac{3\sqrt{2}}{5}}}\\&=\sqrt{\frac{5-3\sqrt{2}}{5+3\sqrt{2}}}\\&=\sqrt{\frac{43-30\sqrt{2}}{7}}\\&=\sqrt{\frac{1}{7}}\times\sqrt{43-30\sqrt{2}}\end{flalign*}
\begin{flalign*}\therefore \tan{\frac{\theta}{2}}&=\sqrt{\frac{1}{7}}\times(\sqrt{\frac{43+7}{2}}-\sqrt{\frac{43-7}{2}})\\&=\sqrt{\frac{1}{7}}(5-3\sqrt{2})\\&=\frac{5-3\sqrt{2}}{\sqrt{7}}\end{flalign*}
\begin{flalign*}\therefore \tan{(90\degree-\frac{\theta}{2})}&=\frac{1}{\tan{\frac{\theta}{2}}}\\&=\frac{\sqrt{7}}{5-3\sqrt{2}}\\&=\frac{5\sqrt{7}+3\sqrt{14}}{7}\end{flalign*}